skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alwedi, Embarek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A dearomatization-dislocation-coupling cascade rapidly transforms aromatic isocyanides into highly functionalized cyclohexadienes. The facile cascade installs an exceptional degree of molecular complexity: three carbon-carbon bonds, two quaternary stereocenters, and three orthogonal functionalities, a cyclohexadiene, a nitrile, and an isocyanide. The tolerance of arylisocyanides makes the method among the mildest dearomatizations ever reported, typically occurring within minutes at −78 °C. Experimental and computational analyses implicate an electron transfer-initiated mechanism involving an unprecedented isocyanide rearrangement followed by radical-radical anion coupling. The dearomatization is fast, proceeds via a complex cascade mechanism supported by experimental and computational insight, and provides complex, synthetically valuable cyclohexadienes. 
    more » « less